Cerebellar learning using perturbations
نویسندگان
چکیده
The cerebellum aids the learning and execution of fast coordinated movements, with acquired information being stored by plasticity of parallel fibre–Purkinje cell synapses. According to the current consensus, erroneously active parallel fibre synapses are depressed by complex spikes arising as climbing fibres signal movement errors. However, this theory cannot solve the credit assignment problem of using the limited information from a global movement evaluation to optimise behaviour by guiding the plasticity in numerous neurones. We identify the possible implementation of an algorithm solving this problem, whereby spontaneous complex spikes perturb ongoing movements, create an eligibility trace for plasticity and signal resulting error changes to guide plasticity. These error changes are extracted by adaptively cancelling the average error. This framework, stochastic gradient descent with estimated global errors, generates specific predictions for synaptic plasticity rules that contradict the current consensus. However, in vitro plasticity experiments under physiological conditions verified our predictions, highlighting the sensitivity of plasticity studies to unphysiological conditions. Using numerical and analytical approaches we demonstrate the convergence and estimate the capacity of learning in our implementation. Finally, a similar mechanism may operate during optimisation of action sequences by the basal ganglia, where dopamine could both initiate movements and signal rewards, analogously to the dual perturbation and correction role of the climbing fibre outlined here. 2 not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was . http://dx.doi.org/10.1101/053785 doi: bioRxiv preprint first posted online May. 16, 2016;
منابع مشابه
Cerebellar motor learning: are environment dynamics more important than error size?
Cerebellar damage impairs the control of complex dynamics during reaching movements. It also impairs learning of predictable dynamic perturbations through an error-based process. Prior work suggests that there are distinct neural mechanisms involved in error-based learning that depend on the size of error experienced. This is based, in part, on the observation that people with cerebellar degene...
متن کاملDynamic modulation of cerebellar excitability for abrupt, but not gradual, visuomotor adaptation.
The cerebellum is critically important for error-driven adaptive motor learning, as evidenced by the fact that cerebellar patients do not adapt well to sudden predictable perturbations. However, recent work has shown that cerebellar patients adapt much better if the perturbation is gradually introduced. Here we explore physiological mechanisms that underlie this distinction between abrupt and g...
متن کاملRobotic learning by cerebellar spiking controller
The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms...
متن کاملSize of error affects cerebellar contributions to motor learning.
Small errors may affect the process of learning in a fundamentally different way than large errors. For example, adapting reaching movements in response to a small perturbation produces generalization patterns that are different from large perturbations. Are distinct neural mechanisms engaged in response to large versus small errors? Here, we examined the motor learning process in patients with...
متن کاملTrial-By-Trial Coding Of Instructive Signals In The Cerebellum: Insights From Eyeblink Conditioning In Mice
The cerebellum is an area of the brain that plays a crucial role in the learning of motor skills. This process involves climbing fibers, which provide teaching signals to Purkinje cells in the cerebellar cortex when perturbations occur during a movement. However, controversy has arisen over climbing fibers contribution to cerebellar learning. This is because climbing-fiber signals are described...
متن کاملCerebellar associative sensory learning defects in five mouse autism models
Sensory integration difficulties have been reported in autism, but their underlying brain-circuit mechanisms are underexplored. Using five autism-related mouse models, Shank3+/ΔC, Mecp2(R308/Y), Cntnap2-/-, L7-Tsc1 (L7/Pcp2(Cre)::Tsc1(flox/+)), and patDp(15q11-13)/+, we report specific perturbations in delay eyeblink conditioning, a form of associative sensory learning requiring cerebellar plas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016